
AVR I N SYSTEM PROGRAMMER

USERSGUIDE

Anders Stengaard Sørensen

November 8, 2004

The AVR In SystemProgrammer (ISP) of Odense University College of En-
gineering (IOT), enable you to programAVR micro controllers, via the par-
allel port of your PC. We have based our AVR-ISP on the popularSTK-200
interface, which can be used with all available AVR download-software. This
document describes the design, the functionality, and how to assemble and
use our AVR-ISP.

Anders Stengaard Sørensen

1

http://www.atmel.com/products/avr/

Contents

1 Introduction 5

2 Theory of operation 5
2.1 The interface hardware. 7
2.2 The connector and cable. .10

3 Assembling the AVR In System Programmer 11
3.1 Identifying the PCB. .11
3.2 Identifying the components. .12
3.3 Mounting the components. .13
3.4 The cable .14

4 Using the AVR-ISP 15
4.1 Connecting to the micro controller. 15
4.2 Connecting with PonyProg. .16
4.3 Connecting with uisp. .17

5 Pitfalls and common problems 19
5.1 BIOS configuration of the parallel port. 19

A Schematic 20

B PCB layout 21

C Bill of materials 22

D Component placement 23

E Test circuit with an ATmega8 24

F Litterature 26

2

WARNING!

Connecting external circuits directly or indirectly to the parallel port may cause damage to your
computer, if the external circuit it is not properly designed and tested. This is especially true if
the external equipment operate with negative voltages, or voltages in excess of 5V.

Although AVR-ISP is designed to protect your computer against excessive external signals, nei-
ther Odense University College of Engineering, nor it’s employees can take any responsibility
for damage caused to your computer when using the AVR-ISP programmer.

You use the AVR-ISP entirely at your own risk, so be careful!

Copyright notice

Everyone can copy and/or use the AVR-ISP design presented here, in any way they see fit. You
are also welcome to copy and distribute this document in its entirety, or to use text and figures
from it, provided you include a proper reference to the original document and author.

3

About the HOPE projects

HandsOn ProgrammableElectronics — orHOPE , is a series of projects, aimed at promoting
the use of programmable electronic components in research, development and students projects,
related to Odense University College of Engineering.

While it is good educational practice to teach classical electronic design, based on discrete com-
ponents and simple integrated circuits, it is also necessary to enable students to gain practical
experience with the highly flexible and complicated devices used in practical electronics today.

As I began teaching in 2003, I was surprised to see the complex circuits students were designing
with 74.. and 40.. type IC’s, to realize registers, counters, decoders and other small digital
systems, that could be realized much easier (and cheaper) in a Programmable Logic Device
(PLD) or even in a micro controller. I was even more surprised to learn that most of the students
had actually followed courses in PLD’s and micro controllers, but thought it too abstract or
troublesome to transfer their experience with PLD or micro controller demonstration systems to
a practical design in its own contexts.

In order to reduce theentry barriertowards programmable electronics, I have initiated a number
of small projects, resulting in a series of tools, that should make it easier to begin working with
selected PLD’s, micro controllers etc. I have launched these projects under the common title
Hands On Programmable Electronics, with subtle reference to the first commandment of the
Hacker Ethic:

Access to computers — and anything which might teach you something about the
way the world works — should be unlimited and total. Always yield to the Hands-
On Imperative! (MIT students
∼ 1960)

It is my HOPE that the tools provided by theHOPE projects will result in increased use of CPLD’s,
micro controllers, FPGA’s, FPAA’s and other programmable electronics in students projects, as
well as R&D projects in corporation with Odense University College of engineering.

Anders Stengaard Sørensen — 2004

4

http://www.urbandictionary.com/define.php?term=the+hacker+ethic

1 Introduction

The AVR-ISP programmer described here will enable you to work with most of Atmels AVR
micro controllers, using the parallel port of your computer, and adownload programsuch as
uispor Pony Programmer.

I have chosen to include tools for the AVR micro controller in theHOPE program, for the follow-
ing reasons:

• Atmel has a largeinventory of AVR processors, which cover a broad area of applications.

• AVR processors are relatively powerful, inexpensive, easy to use and easy to come by.

• There exist a largeuser community, promoting free software, reference designs, discussion
groups etc. on the Internet.

• Due to previous AVR projects in the local community, we can utilize existing experience.

During 2003 and 2004, I have used the ATmega8 and ATmega128L, in our summer courseDe-
sign and construction of a robot car. Replacing the MC68HC11 used previously, the AVR pro-
cessor proved much easier to use, as the students had working micro controllers up and running
1 or 2 days into the course.

You will probably be assembling the AVR-ISP as part of one of your first projects with AVR
processors, very likely planning to use it with an ATmega8 or ATmega128, which we usually
recommend — and keep on stock — for students projects at Odense University College of Engi-
neering.

If you follow the guidelines and reference designs given below, you should have a micro con-
troller up and running later to-day.

2 Theory of operation

Most modern programmable devices offer the possibility ofin system programming, allowing
the user to up- and download configuration, program code and data while the device is mounted
in a circuit. Many different schemes exist for in system programming, some are specific for a
single type of devices, while others follow international standards like JTAG.

The AVR micro controllers we use at Odense University College of Engineering (IOT1), offer in
system programming through a scheme, known as AVR-ISP, which — to my knowledge — is
specific for AVR micro controllers. AVR-ISP is thoroughly described in AtmelsAVR910 - In-
System Programmingapplication note [1], but it can be briefly summarized as a standard 3-wire
synchronous serial SPI interface, overlaid by a RESET signal and a power supply, resulting in
the 6-wire interface shown in figure1

1In Danish:“Ingeniørhøjskolen Odense Teknikum”

5

http://savannah.nongnu.org/projects/uisp/
http://www.lancos.com/prog.html
http://www.atmel.com/products/AVR
http://www.avrfreaks.org
http://www.af50.gratiswiki.dk
http://www.af50.gratiswiki.dk
http://www.iot.dk

GND

VCC

MISO

MOSI

SCK

RESET

P
rogram

m
ing interface

P
ersonal com

puter / W
orkstation

AVR microcontroller E
m

bedded application
+5/3.3V

0V

Power

MISO

GND

MOSI

SCK

RESET

Figure 1: The programming interface and its connection to the micro controller

The function of each of the 6 signals are:

Power: Is used to supply the programming interface. By using the same power supply as the
micro controller, it is ensured that the programming interface and the micro controller will
always have compatible signal levels, so the same programming interface can be used with
both 5.0V and 3.3V micro controllers.

RESET: Is used by the programming interface to place the micro controller in it’sresetstate,
when communicating with it.

SCK: (Serial ClocK) is the master clock the programming interface use when communicating
with the micro controller. One bit is passed on MISO / MOSI for each clock cycle on SCK,
thus the term “synchronous serial interface”.

MOSI: (Master Out, Slave In) is the signal used to pass bits from the programming interface —
which is the master — to the micro controller.

MISO: (Master In, Slave Out) is the signal used to pass bits from the micro controller — which
is the slave — to the programming interface.

GND: Is the zero-reference for the signal lines, and 0V for the power supply.

With the hardware of the 6-wire AVR-ISP interface in place, up- and downloading code and
data, is simply a matter of reading and placing the right bits on the synchronous serial interface
in the right order. This is accomplished in cooperation between the programming interface and
the programming software running on the PC / workstation. Relevant protocols and algorithms
for this is described in e.g. application notes AVR910 [1] and AVR911 [2], but usually we leave
the details to off the shelve programming software.

6

2.1 The interface hardware

There are many different approaches to realizing an AVR programming interface, and thus a
multitude of different interfaces exist in the AVR community. Most of the difference have to do
with the way the programming interface connects to the PC, and which types of micro controllers
they can program.

I have chosen an implementation which is both very simple to build, while it is compatible to
one of the most popular programming interfaces in the community — the STK-200. This have
resulted in a small and simple circuit, which can be assembled in an hour or less, and which can
be used with all available programming software.

The STK-200 type interface, utilizes the parallel (printer) port of a PC, using one pin in the par-
allel port for each digital signal in the AVR-ISP interface, and letting the programming software
control the pins of the parallel port in the correct sequences.

In principle, the parallel port of a PC can be connected directly to an AVR micro controller, but
having a simple circuit in between offer some important benefits:

• Level shifting between the 5V TTL compatible parallel port, and an AVR micro controller
running on other voltages than 5V.

• Suppression of signal reflections in the cable, due to impedance mismatch in the signal
paths.

• Protection of the PC’s parallel port against minor over voltages, spikes etc.

Identification

P
rotection and level shifting

S
ignal buffers

R
eflection supression

P
C

 parallel port

IOT AVR−ISP

(STK−200)

Cable

A
V

R
 m

icrocontroller

Embedded application

Figure 2: Block diagram of the IOT AVR-ISP

7

The block diagram of the IOT AVR-ISP, shown in figure2, indicate the overall structure of the
programming interface, which consist of four major blocks:

• Identification

• Protection and level shifting

• Signal buffers

• Reflection suppression

For a detailed schematic of the interface, please refer to figure12 in page20

2.1.1 Identification

In order to allow the programming software on the PC to check if the correct programming
interface is connected to the PC, the interface identifies itself by drawing pin 15 to logic 1, and
by connecting pin 2 to pin 12 and pin 3 to pin 11. These connections allow the programming
software to check if an STK-200 type interface is connected to the parallel port, by checking if
the input pins 11 and 12, follow the level on the output pins 3 and 2. It can also determine if the
programming interface is powered, by checking the status of input pin 15.

11 12 13 141 2 3 4 2515
V

C
C

Parallel port

Figure 3: Identification the programming interface as an STK-200 on the parallel port

2.1.2 Protection and level shifting

In order to protect the parallel port against minor over voltages, due to errors in the embedded
application, none of the parallel port pins are connected directly to a signal which is in contact
with the embedded application.

All input pins on the parallel port is connected to the rest of the programming interface through
68Ω resistors (R1 and R8). As the parallel port inputs are protected by clamping diodes as
sketched in figure4(a), the resistors will protect the inputs from over voltages up toIm × 68Ω,
whereIm is the maximum current the clamping diodes can withstand. Assuming the diodes
can handle a continuous current of approximately50mA, the resistors will enable the circuit to
tolerate voltages in the range of approximately -3.5V to +8.5V, without causing damage to the
parallel port. The level of protection might be increased by increasing the value of the resistors,

8

+5V

0V

Parallel port input

Clamping diode

Clamping diode

68Ω

Input pin with internal clamp diodes

(a) Input protection

+5V

4k7

GND0V

VCC

Signal buffer inputParallel por toutput pin

(b) Output protection

68R

100nF

0V

GND

Computer GND

(c) Ground protection

Figure 4: The electrical protection of the parallel port

but if the resistors become too high, the input signals might deteriorate and cause transmission
errors. The value of68Ω is chosen because it is also used in other parts of the circuit, and I would
like to keep the number of different components to a minimum. The parallel port input levels are
compatible to both 3.3V and 5V CMOS output levels, so no level shifting is necessary for the
parallel port inputs.

All output pins on the parallel port are connected to signal buffer inputs through4.7kΩ resistors
(R3, R4, R5, R6 and R7), as shown in figure4(b). The resistors provide ample protection for
the output pins, in the unlikely case the signal buffers should become low impedance (defective).
Assuming the parallel port outputs can withstand 10mA continuous current, the resistors will
make the outputs tolerate low impedance connection to a voltage in the range±45V . The4.7kΩ
resistor also provide level shifting in cooperation with the input clamping diodes of the signals
buffers, effectively shifting the 5V TTL compatible outputs down to an acceptable level if the
programming interface is powered by a voltage lower than 5V.

In order to further reduce the risk of excessive currents flowing through the parallel port in case
of accidents, even the ground reference is wired through a68Ω resistor (R13), in parallel with
a 100nF capacitor (C5), as shown in figure4(c). The resistor inhibit current from flowing be-
tween the parallel port and the programming interface, and will even act as a fuse if the current
approaches 100mA. The capacitor will allow high frequency currents to pass uninhibited be-
tween the PC and the programming interface, maintaining the integrity of the flanks of the pulses
traveling between PC and programming interface.

2.1.3 Signal buffers

Passing the signals through a set of buffers, play a role in adapting the logic levels, as the output
voltages of the signal buffers can not exceed its supply voltage, which is drawn from the same
supply as the micro controller. The buffer also maintain signal integrity even though the signals

9

are passed through resistors in order to provide protection against excessive currents in the face
of accidental wrong connections etc.

The buffer used in the IOT AVR-ISP is the 74HC125High speed CMOS quad three state buffer
(IC1). The use ofhigh speed CMOS(74HC) technology ensure compatibility with supply volt-
ages from 3V to 5V, andthe 74HC125 should not be substituted with other logic families
such as the more popular 74LS or 74HCT.

The use of three-state buffers allow the programming software to disable the signals connected
to the micro controller, when it is not being accessed, so the programming interface can remain
connected to the micro controller after programming, even if the programming pins of the micro
controller is used for I/O.

In order to protect the programming interface from wrong connections, the 74HC125 is protected
from wrong polarization of the power supply, by routing the power supply through a diode (D1).
D1 is a shottky diode which will introduce a voltage drop of approximately0.3V

2.1.4 Reflection suppression

As it is impractical to implement impedance matching to the programming cable near the micro
controller, the programming interface is designed to suppress reflections on the cable using sim-
ple RC stages (R9/C2, R11/C4 and R10/C3) that will absorb most of the high frequency content
of reflected flanks.

2.2 The connector and cable

In the application noteAVR910: In-System Programming[1], Atmel recommend that the 6 wires
connecting the programming interface to the micro controller, should be configured in a2 × 3
pin header with 100mil spacing.

Instead of following Atmels recommendation, I have equipped the IOT AVR-ISP with a1 × 6
pin header. The main reasons for this is to be compatible with prior AVR designs in the local
community, because2× 3 IDC (ribbon cable) connectors are hard to come by, and because it is
easier for most students to mount a1× 6 non-ribbon-cable connector than a2× 3.

If it should become necessary to connect to an embedded application with an Atmel type layout,
it will be quite easy to make a cable with an IOT layout in one end, and an Atmel layout in the
other.

10

2

3

4

5

6

1
/RESET

VCC

SCK

MISO

MOSI

GND

100mils

1

3

5

2

4

6
/RESET

SCK

MISO VCC

MOSI

GND

(a) IOT connector layout (b) Atmel connector layout

Figure 5: Common connector layouts

3 Assembling the AVR In System Programmer

This section refers to version 1.0 of the IOT AVR-ISP, which is currently the only existing ver-
sion.

3.1 Identifying the PCB

The PCB for the AVR-ISP, is polygonal, with a37×27mm outline, designed to fit inside common
shields for 25-way sub-D connectors. Figure6 show a photo of both sides of the PCB. The top
side — also referred to as the component side — marked by the text’AVR ISP 1.0’ , while the
bottom (solder) side, is marked with the text’Anders Sørensen - IOT 2004’. The exact layout of
the PCB is available in figure13on page21

(a) Top (component) side (b) Bottom (solder) side

Figure 6: The PCB

11

3.2 Identifying the components

All the components used in the AVR-ISP, except the cable, are shown with the photograph in
figure7. A detailed list of the components can be found in table1 on page22

Figure 7: Overview of components

The two connectors should be easily identified from figure7, check that CON1 is aplug type
(with 25 small pins), which fit thesockettype connector (with 25 small holes) in the back of your
computer.

IC1 is also easy to identify, as the text74HC125Dshould be printed clearly on top of it.

The resistors can be identified by close inspection, as their values are printed on them in fine
print — you may have to use a magnifying glass. 68Ω is printed as68R0, 4.7kΩ as4701 , and
100kΩ as1003 .

As the value of capacitors is usually not printed directly on the components, there is no direct
way of identifying the capacitors once they have been removed from their storage. The capacitors

12

can only be identified from the printing on the container that stored them. Be careful not to mix
the capacitors after they have been removed from their storage.

D1 can not be uniquely identified from the naked component as the component is not large
enough to hold its entire name. Instead the diode is marked with the codeD96. Be sure to
identify the diode from the printing on its container.

3.3 Mounting the components

If you have no experience with mountingsurfacemountdesign (SMD) components, you might
want to practice your skills by soldering a few spare resistors between the pads of a piece of
prototyping PCB, or ask someone with more experience for a demonstration. Once you have
practiced a bit, it shouldn’t be too hard to master, using thin solder and a set of pointed tweezers
to hold the components.

• Start by soldering one pin while you hold the component in place with the tweezers.

• Let go of the component.

• Solder the remaining pins of the component.

• Re solder the first pin to remove any mechanical stress caused by force or vibration while
you held it with the tweezers.

All the components are either bidirectional, or asymmetrical, so they can not be turned the wrong
way. One possible exception is IC1, as SMD IC’s are not always marked near pin 1. Please refer
to the data sheet of the specific version of 74HC125D you use, if you have any doubt about the
pin placement or direction.

The position of components can be seen in figure14. The mounting sequence is arbitrary, but I
find it easier to begin with IC1, continue with all the SMD components on the top side, move on
to all the SMD components on the bottom side, and finish with CON2 and CON1.

Note that the PCB slides in between the two pin-rows of CON1, with 13 pins on the top side and
12 pins on the bottom side. CON2 should be mounted on the top side, and it is a god idea to cut
off the pins sticking out on the bottom side after mounting it.

Remember that IC1 and D1 can be vulnerable to static discharges. Avoid buildup of static charges
while working with the components — do not rub your shoes on the floor, and remember to touch
the metal frame of your table before you start working to get rid of any static charge. If you have
access to a proper antistatic workbench with a wristband, that is even better.

13

3.4 The cable

The cable connecting the AVR-ISP to the circuit board containing the micro controller should
simply have a1 × 6 connector in each end, connecting pin 1 to pin 1, pin 2 to pin 2 etc. As
indicated by figure7, I propose to use a MOLEX type connector for the AVR-SIP, as MOLEX
connectors offer both friction lock and mechanical polarization. The cable could simply be
soldered directly to the PCB, without using a connector, but wires soldered directly in a PCB are
prone to metal fatigue, so a connector offer much better mechanical stability. Direct soldering
can only be recommended if you mount the AVR-ISP in an enclosure that ensures that the cable
wires can not move with respect to the PCB.

In many cases, a simple pin header without friction lock and polarization will be used on the
micro controller PCB, as it is more compact than a MOLEX connector, so you should consider
using a narrow pin-header female connector in the micro controller end of the cable, as shown
in the picture on the front page. Using a connector without polarization is not a problem, as it is
harmless to the micro controller and AVR-ISP to turn the cable the wrong way — you will just
not be able to communicate with the micro controller.

There are no special requirements for the cable, and no need to use e.g. shielded cable. The
simplest way is to twist or braid 6 single wires, or to use a 6-way ribbon cable. Using double
spacing (100 mils2) ribbon cable as shown in the front page, is probably the most elegant and
robust solution.

The individual terminals used in MOLEX- and other types of pin-header connectors are designed
to be crimped onto the wires, using a special crimp tool. Although they can be mounted using
a set of pliers or by soldering, using the correct crimp tool offer much better mechanical and
electrical integrity, drastically reducing the risk of cable malfunction over time.

22.54mm

14

4 Using the AVR-ISP

This chapter will give an introduction, that should allow you to make the proper electrical con-
nections to an AVR micro controller, and use one of the popular download-programs to connect
to the micro controller.

4.1 Connecting to the micro controller

One of the major benefits of AVR micro controllers is the simplicity of the external circuitry
needed to use them. One of the simplest possible circuit to demonstrate an AVR micro controller
is shown in figure8, and contain:

• The micro controller.

• A decoupling capacitor.

• A pull-up resistor to keepRESET high.

• A 6× 1 connector/pin-header for programming.

• A Light emitting diode (LED) with a current limiting resistor — so we can see the micro
controller doing something useful, like blinking with the LED.

• A voltage supply, fitting the micro controller (5/3.3V).

RESET

VCC

GND

SCK

MISO

MOSI

Output

5

6

4

1

2

3
100nFLED

270R

10k
AVR−microcontroller

Pinheader

5V/3.3V

Figure 8: A simple test circuit with an AVR micro controller

An example such a test circuit, based on an ATmega8 can be seen in figure15

15

4.2 Connecting with PonyProg

One of the most popular download programs in the AVR community is PonyProg [3] of Lan-
conelli Open Systems. PonyProg is a generic download program, intended for use with many
different programmable devices that use serial communication, among which are the AVR micro
controllers.

PonyProg versions for Linux as well as windows can be downloaded from PonyProgs Internet
site [3], and are easily installed on a PC.

After installing PonyProg must be set up for:

• Using the parallel port

• Using the STK-200 type interface (AVR ISP I/O)

• The type of device used (AVR micro)

• The specific AVR micro controller you use (eg.ATmega8)

Before using the interface, it must also be calibrated using thecalibration option in theSetup
menu.

Figure 9: Setup for the IOT AVR-ISP

If you don’t yet have a program to download, and your micro controller is still empty, a con-
venient way to test if you can connect to it, is to read the configuration and security bits of the
micro controller.

Use theConfiguration and security bitsentry of theCommandmenu to get the window shown
in figure10. Then use theReadbutton to read the bits from the micro controller.

16

If the AVR-ISP works properly, you should see two smallstatuswindows pop up and vanish in
rapid secession, to be replaced by theConfiguration and Security bitswindow as shown in figure
10.

If the AVR-ISP is not working or not connected properly, you will get anAlert stating that:
Device missing or unknown device (-24).

Figure 10: Looking at the micro controllers configuration and security bits

Figure10 show how the bits are configured in an unused ATmega8 processor.You shouldn’t
change(write) the configuration and security bitsunless you know what you are doing, as a
wrong configuration of e.g. the clock bits may disable the internal oscillator, taking the program-
ming interface offline, until an external clock source is connected.

Once you have verified that PonyProg can communicate with your micro controller, it should be
straight-forward to program the micro controller with the.hex files that is generated by your
compiler/linker. If you need the source-code for an example program, figure16shows a program
for a blinking LED.

4.3 Connecting with uisp

While PonyProg is clearly intended for people who prefer graphical point and click user inter-
faces, uisp is intended for people who prefer a command oriented interface, in order to acess
software tools from a command prompt or a Makefile.

UISP is developed as free software at the uisp development website:http://savannah.nongnu.org/projects/uisp.
The source code can be downloaded from the website and compiled on your local computer, or
compiled binaries can be downloaded from e.g.http://cdk4avr.sourceforge.net/

17

http://savannah.nongnu.org/projects/uisp
 http://cdk4avr.sourceforge.net/

Although uisp may seem modest in comparison to PonyProg, it is at least as powerfull when it
comes to programming AVR micro controllers. You can learn all about the features of uisp by
using it’s integral manual, which can be summoned by giving the command:uisp --help

In order to use uisp with our STK-200 compatible AVR-ISP interface, using the normal parallel
ports, you can run uisp with the options (assuming the parallel port of your computer is located
at address 0x378)
uisp -dlpt=0x378 -dprog=stk200

In order to simply check the connection between your computer and an AVR micro controller,
you can use the uisp command to read the configuration and security bits, also known asfuses.
You do this with the command:
uisp -dlpt=0x378 -dprog=stk200 --rd fuses

The result should look similar to figure11

Figure 11: Looking at the micro controllersfuses

Naturally, uisp can also up- and download binary (.hex) files. This is done with commands like:
uisp -dlpt=0x378 -dprog=stk200 --upload if=program.hex

uisp -dlpt=0x378 -dprog=stk200 --download of=flashdump.hex

As mentioned above, uisp is an excellent tool when using Makefiles. A sample makefile, using
uisp, can be found in figure17.

18

5 Pitfalls and common problems

In this section I describe some of the pitfalls and common mistakes that have previously been
encountered by users of the AVR-ISP. If you encounter a pitfall or make a mistake that could
have been avoided with better documentation, please send me a note so I can update the next
revision of this document.

5.1 BIOS configuration of the parallel port

If you can’t connect to the micro controller, and you are fairly certain that you have assembled
and connected AVR-ISP correctly, you should determine if the problem is with your computer,
the AVR-ISP or the micro controller. You can do this by exchanging each of them with a coun-
terpart that is known to work, e.g. by swapping gear with someone that already has a working
system.

If you can determine that the problem is not with the AVR-ISP or micro controller, but rather
with your computer, there is a good chance that your BIOS setup for the parallel port is wrong.

Enter the BIOS setup, and verify that the parallel port is configured for bidirectional communi-
cation. If the port have several different settings, you might have to try them in turn until you can
reach the micro controller.

19

A Schematic

AVR ISP interface V. 1.0

Anders Stengaard Sørensen

HOPE Hands-On Programmable Electronics N/A
1STK-200 type AVR programmer

A
TM

E
L

M
ic

ro
co

nt
ro

lle
r

P
C

 P
ar

al
le

l p
or

t 114
215
316
417
518
619
720
821
922
1023
1124
1225
13

CON1

1

2 3

IC1A

4

5 6
IC1B

10

9 8

IC1C

13

1211
IC1D

D1

R1

R
2C1

R3

R4

R5

R6

R7

R8

R9

R10

R11

C2

C3

C4

R
12 1

2
3
4
5
6

CON2

C5 R
13

MISO

POWER
SCK

MOSI

RESET

74HC125D

74HC125D

74HC125D

74HC125D

BAS70-04

68R

4k
7

GND

V
C

C

100n

4k7

4k7

4k7

4k7

4k7

68R

GND

68R

68R

68R

220p

220p

220p

GND

GND

GND

10
0k

V
C

C

GND

100n

68
R

Figure 12: Schematic of the IOT AVR-ISP

20

B PCB layout

(a) Top (component) side (b) Bottom (solder) side

Figure 13: PCB layout of the AVR-ISP

21

C Bill of materials

Part Value Package Description
IC1 74HC125D SO14 Quad bus BUFFER, 3-state
D1 BAS70-04 SOT23 Silicon Schottky Diodes
C1 100nF 0805 CAPACITOR
C2 220pF 0805 CAPACITOR
C3 220pF 0805 CAPACITOR
C4 220pF 0805 CAPACITOR
C5 100nF 0805 CAPACITOR
R1 68Ω 0805 RESISTOR
R2 4.7kΩ 0805 RESISTOR
R3 4.7kΩ 0805 RESISTOR
R4 4.7kΩ 0805 RESISTOR
R5 4.7kΩ 0805 RESISTOR
R6 4.7kΩ 0805 RESISTOR
R7 4.7kΩ 0805 RESISTOR
R8 68Ω 0805 RESISTOR
R9 68Ω 0805 RESISTOR
R10 68Ω 0805 RESISTOR
R11 68Ω 0805 RESISTOR
R12 100kΩ 0805 RESISTOR
R13 68Ω 0805 RESISTOR
CON1 M25D SUB-D 25 way sub-D, plug
CON2 PINHD-1X6R PIN HEADER MOLEX

Table 1: Bill of materials

22

D Component placement

(a) Components on the top side (b) Components on the bottom side

Figure 14: Component placement

23

E Test circuit with an ATmega8

PB5(SCK) 19

PB7(XTAL2/TOSC2)10

PB6(XTAL1/TOSC1)9

GND8

VCC7

AGND22

AREF21

AVCC20

PB4(MISO) 18
PB3(MOSI/OC2) 17
PB2(SS/OC1B) 16

PB1(OC1A) 15
PB0(ICP) 14

PD7(AIN1) 13
PD6(AIN0) 12
PD5(T1) 11

PD4(XCK/T0) 6
PD3(INT1) 5
PD2(INT0) 4
PD1(TXD) 3
PD0(RXD) 2

PC5(ADC5/SCL) 28
PC4(ADC4/SDA) 27

PC3(ADC3) 26
PC2(ADC2) 25
PC1(ADC1) 24
PC0(ADC0) 23PC6(/RESET)1

IC1

C1

R
1

R
2

1
2
3
4
5
6

JP1

LE
D
1

X1-1

X1-2

SCK

SCK

MISO

MISO

MOSI

MOSI

MEGA8-P

100n

10
k

22
0R

(a) Schematic

(b) Components (c) Completed test circuit.

Figure 15: A test circuit with an ATmega8

24

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>

#if defined(__AVR_ATmega8__)

#else
error "Don’t know what kind of MCU you are compiling for"
#endif

int main (void)
{

volatile long int i; / * i must be volatile to prevent the compiler from
optimizing thee pause loop away * /

DDRB=0xff; / * Set all port B bits to output * /

while(1) { / * An infinite loop * /
PORTB=000; / * Set all port B bits low * /
for(i=0;i<10000;i++); / * An empty (pause) loop * /
PORTB=0xff; / * Set all port B bits high * /
for(i=0;i<2500;i++); / * An empty (pause) loop * /

}

return (0);
}

Figure 16: Code example to blink with a LED on port B

MCU=atmega8
CC=avr-gcc
OBJCOPY=avr-objcopy
CFLAGS=-g -mmcu=$(MCU) -Wall -Wstrict-prototypes
#-------------------
all: demo.hex
#-------------------
demo.hex : demo.out

$(OBJCOPY) -R .eeprom -O ihex demo.out demo.hex
demo.out : demo.o

$(CC) $(CFLAGS) -o demo.out -Wl,-Map,demo.map demo.o
demo.o : demo.c

$(CC) -I /usr/include/avr $(CFLAGS) -Os -c demo.c
you need to erase fist before loading the program.
load (program) the software into the eeprom:

load: demo.hex
uisp -dlpt=0x378 --erase -dprog=stk200
uisp -dlpt=0x378 --upload if=demo.hex -dprog=stk200 -v=3 --hash=32

#-------------------
clean:

rm -f * .o * .map * .out
#-------------------

Figure 17: Example Makefile for use with avr-gcc and uisp (on a UNIX system)

25

F Litterature

References

[1] Atmel Semiconductors, 8-bit AVR RISC Microcontroller Application Note —AVR910:
In-System Programming

[2] Atmel Semiconductors, 8-bit AVR RISC Microcontroller Application Note —AVR911:
AVR Open-source Programmer

[3] Lanconelli Open Systems, PonyProg - Serial device programmer
http://www.lancos.com/prog.html

26

http://www.atmel.com/dyn/resources/prod_documents/DOC0943.PDF
http://www.atmel.com/dyn/resources/prod_documents/DOC0943.PDF
http://www.atmel.com/dyn/resources/prod_documents/doc2568.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2568.pdf
http://www.lancos.com/prog.html

	Introduction
	Theory of operation
	The interface hardware
	The connector and cable

	Assembling the AVR In System Programmer
	Identifying the PCB
	Identifying the components
	Mounting the components
	The cable

	Using the AVR-ISP
	Connecting to the micro controller
	Connecting with PonyProg
	Connecting with uisp

	Pitfalls and common problems
	BIOS configuration of the parallel port

	Schematic
	PCB layout
	Bill of materials
	Component placement
	Test circuit with an ATmega8
	Litterature

